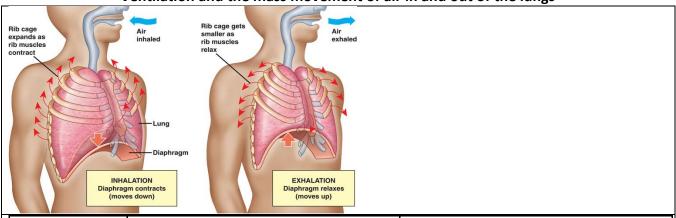

Task 1 Specialised Exchange Surfaces Research.

Example 1 Mammalian Lungs, Alveoli and Exchange

FOR EACH EXAMPLE the aim is for you to be able to:

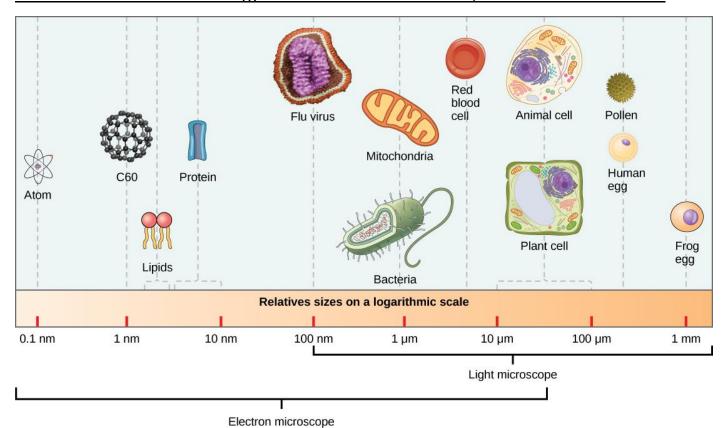

- 1. Name the substances exchanged
- 2. Describe key processes involved with increasing mass movement of air or water = ventilation
- 3. Describe key structures and tissue types and adaptations using A level terminology
- 4. Describe and explain the transfer methods diffusion/osmosis/active transport

Describe the key structures of a mammalian lung

Part	Location/ function	Features/ tissue arrangement
Lungs		
Trachea		
Bronchus		
Cartilage		
Bronchioles		
Alveoli		

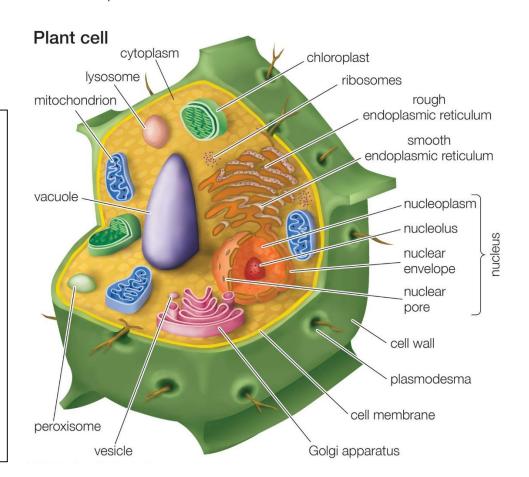
Ventilation and the mass movement of air in and out of the lungs

	Inspiration [inhaling]	Expiration [exhaling]	
Diaphragm			
External intercostal muscles			
Internal intercostal muscles			
Relative change in volume of chest cavity			
Pressure in chest cavity relative to atmospheric			
Subsequent direction of air movement			
Explanation for ventilation linked to concentration gradients of oxygen and carbon dioxide			


Adaptation of the alveoli for rapid gas exchange.

Adaptation of the alveoli for rapid gas exchange.	
Oxygenated blood Deoxygenated blood Alveolus Capillaries	
High CO ₂ concentration Low O ₂ concentration inside red blood cells Endothelial cell of capillary Red blood cell compressed against capillary wall Exhaled air Inhaled air Alveolar duct Epithelial cell of alveolus Moist alveolar surface Pulmonary capillary Blood plasma	

Tissue or substance	Descriptions	Adaptation linked rapid rate of diffusion
Alveoli number in lungs		
Alveolus size linked to SA/Vol		
Epithelial cells of the alveolus		
Surfactant		
Endothelial cells of the capillary		
Red blood cells erythrocytes		


Example 1 Mammalian Lungs, Alveoli and Exchange		
 FOR EACH EXAMPLE the aim is for you to be able to: Name the substances exchanged Describe key processes involved with increasing mass movement of air or water = ventilation 		
 3. Describe key structures and tissue types and adaptations involved using A level terminology 4. Describe and explain the transfer methods diffusion/ osmosis/ active transport 		
Extended writing task		

Welcome to A-Level Cell Biology and Enter the world of cells; where size does matter!

For each organelle you need to

- Draw an annotated diagram
- Describe its structure using the phrases in the end table
- Describe its function again using the phrases in the end table
- Add extra points to your research.

Organelle	Labelled diagram
Nucleus	
Function of th	ie Nucleus

Organelle	Labelled diagram
_	
Rough	
Endoplasmic Reticulum	
Recicaiani	
Eupstion of th	ne Rough Endoplasmic Reticulum
Function of th	le Rough Endoplasmic Reticulum

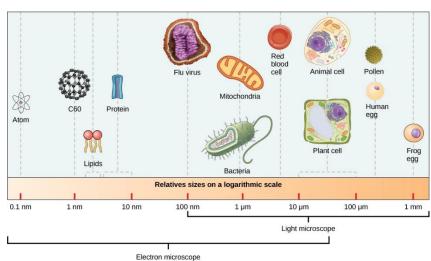
Organelle	Labelled diagram
Caracila	
Smooth	
Endoplasmic Reticulum	
Reticulum	
Francisco of the co	Constable Food and a social Dation book
Function of the	Smooth Endoplasmic Reticulum

Organelle	Labelled diagram
Golgi	
Apparatus	
Function of th	ne Golgi Apparatus

Use the information in the table below to complete your tables

	STRUCTURE Points	FUI	NCTION points
	The largest organelle Dark patches are chromatin which consists		Receives proteins from the ER and modifies them adding sugar molecules
_	of DNA wound round histone proteins.		Contains genetic material
	Surrounded by an envelope a double membrane structure		Packages proteins into vesicles to be transported inside cell or to the outside of
	Has pores - allows large molecules through like messenger RNA to pass		the cell Folds protein molecules into their specific
	Nucleolus inside		3D shape
	Consists of flattened membrane-bound		Chromatin consists of DNA and proteins
	sacs - which pinched off to form vesicles		When cells divide, chromatin condenses
	System of membranes, containing fluid		into visible chromosomes
	filled cavities and is continuous with the nuclear membrane.		Nucleolus makes RNA and ribosomes.
П	Endoplasmic reticulum with attached		Provides a large surface area for ribosomes, these assemble amino acids into proteins
	Ribosomes		Involved in making Lipids
	This part is not surrounded by a membrane	_	
	and it contains RNA		Transports proteins made on attached ribosomes
	Endoplasmic reticulum without attached Ribosomes		Contains enzymes involve with the lipid metabolism
	Stack of membrane-bound, flattened sacs		The ribosomes are where protein synthesis
	In mammalian cells, the average is approximately 6 micrometres (µm)		takes place assembly line to use mRNA to assemble proteins.

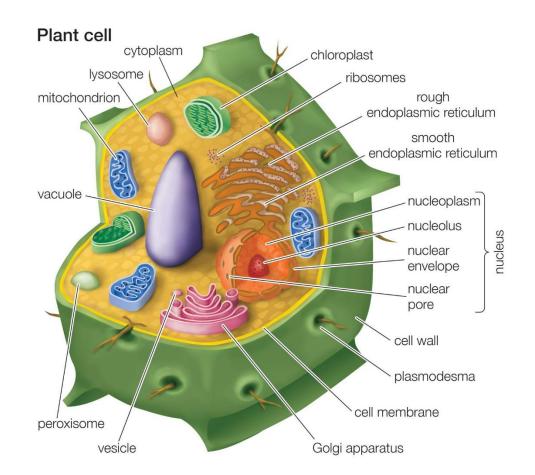
Welcome to A level Biology Cells organelles Part 2


The world of cells; where size does matter!

Complete the table as you did for Cell Organelles Part 1

There is a part 3 to cell organelles

For each of the organelles in Part 1 and 2 write a paragraph in your


own words to describe their structure and function, next week you can add the final

For each organelle you need to

organelles also.

- Draw an annotated diagram
- Describe its structure using the phrases in the end table
- Describe its function again using the phrases in the end table
- Add extra points to your research.

Cell structure research Part 2

Organelle	Labelled diagram
Mitochondria	
Eunstian of th	ne Mitochondria
runction of th	ie witochondria

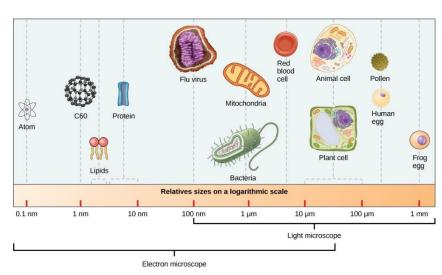
Organelle	Labelled diagram
Chloroplast	
-	
Function of th	ne chloroplasts

Organelle	Labelled diagram
Vacuole	
Function of th	ne Vacuole

Organelle	Labelled diagram
Lysosomes	
Lysosomes	
Function of th	ie Lysosomes

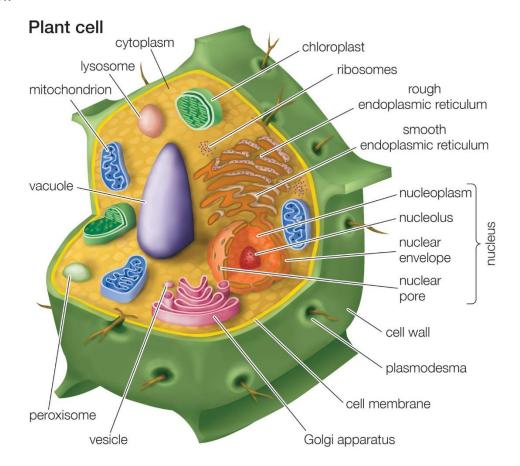
Organelle	Labelled diagram
Cilia and	
undulipodia	
Function of th	ne Cilia and undulipodia

Use the information in the table below to complete table


STRUCTURE	FUNCTION
☐ Inner membrane is folded to form cristae.	☐ Contains fluid
Central part is the fluid filled matrix.	Site of photosynthesis
☐ Contain a fluid filled matrix called a stroma.	☐ Keep hydrolytic enzymes separate from the
A stack of thylakoids is called a granum.	rest of the cell
Can be spherical or rod shaped and are 2- 5μm long.	 Can fuse with phagosomes/phagocytic vesicles to digest pathogens
☐ Surrounded by 2 membranes with a fluid space between them.	Only plant cells have large permanent onesThe second stage occurs in the stroma and
☐ These are protrusions from the cell and are surrounded by the cell surface membrane.	is when hydrogen reduces carbon dioxide using energy from ATP to make carbohydrates
Small single membrane bound bags formed by the Golgi apparatus.	 Helps to support the plant, when a cell is turgid this pushes the cell membrane
They are formed from centrioles.	against the cell wall
Each contains microtubules.	Spermatozoon have a single undulipodium
Each stack of thylakoids is called agrana.	which uses a whip like action to move the cell
Chlorophyll molecules are located within the thylakoid membranes.	They are self-replicating
☐ The inner membrane is a stack of	Are called plastids
membrane-bound, flattened sacs called thylakoids	 Cells with these line the airways and move mucus
☐ Contain loops of DNA	lacktriangle These beat to move a band of mucus
Contain a loops of DNA and starch granulesSpherical sacs surrounded by a single	☐ They are abundant in cells with a high level of metabolic activity
membrane called a tonoplast Are large organelles 4-10μm long	☐ Site where ATP is produced during respiration
☐ Are only found in plants and protoctist cells	There are many of these in phagocytic cells
☐ Surrounded by a double membrane or envelope	 Contain hydrolytic digestive enzymes which break down materials
	☐ First stage of photosynthesis take place in the grana, this is where light energy is trapped by chlorophyll to make ATP

For each of the organelles in Part 1 and 2 write a paragraph in your own words to describe their structure and function.

Welcome to A level Biology Cells organelles Part 3


Organelles without membranes

- Complete the table as you did for Cell Organelles parts 1 and
- 2. Submission task For each of the organelles in Part 1,2 and 3 write a paragraph in your own words to describe their structure and function.

For each organelle you need to

- Draw an annotated diagram
- Describe its structure using the phrases in the end table
- Describe its function again using the phrases in the end table
- Add extra points to your research.

Cell structure research Part 3

Organelle	Labelled diagram
Ribosomes	
Function of th	ne Ribosomes

Organelle	Labelled diagram
Contribles	
Centrioles	
F	- Contributor
Function of the	https://www.youtube.com/watch?v=7_QD3zCapoA
Flease water	nttps://www.youtube.com/watchrv=7_QDS2CapoA

Organelle	Labelled diagram
Cotto de alcalata a	
Cytoskeleton	
Function of th	ne Cytoskeleton
Function of the	le Cytoskeleton

Organelle	Labelled diagram
Cellulose cell	
wall	
Function of th	e cellulose cell wall

Use the information in the table below to complete table

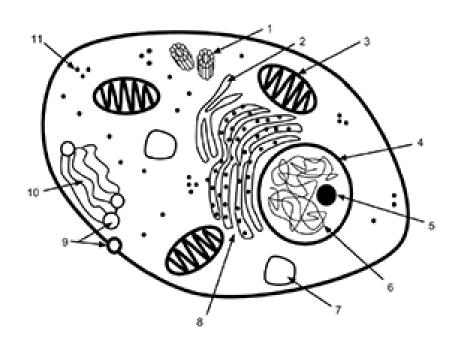
STRUCTURE	FUNCTION
STRUCTURE □ Small spherical organelles 20nm in diameter. □ Consist of two bundles of microtubules at right angles to each other □ Consist of microtubules, these are made of tubulin protein subunits, and are arranged to form a cylinder □ A network of protein structures in the cytoplasm □ Rod-like microfilaments made of actin sub units and each microfilament has a diameter of 7nm	□ Involved with the synthesis of proteins □ Forms the spindle fibres required for mitosis and meiosis □ If free in cytoplasm they are involved with synthesising proteins for use in the cell □ Chromes attach to the spindles and motor proteins 'walk along' the tubulin threads moving the chromosomes to the poles □ If bound to the RER they are involved with synthesising proteins for export out of the cell □ Are involved in the formation of cilia and
Outside the plasma membraneMotor proteins for example myosin and kinesins are attached	undulipodia Support the cytoplasm and help the cell keep its shape
 □ Is made from bundles of cellulose fibres □ Made of ribosomal RNA □ Can be bound to endoplasmic reticulum or remain free in the cytoplasm 	 □ They form the track that motor proteins walk along to drag organelles □ Provide strength and support in plant cells □ Prevent the cell bursting when turgid

Review what you have learn before finishing your major submission task described below

https://www.youtube.com/watch?v=cj8dDTHGJBY&list=PLnyeng9CrBLdH0yhxt2ABSt2aMucE_9vPhttps://www.youtube.com/watch?v=9UvlqAVCoqY&list=PLnyeng9CrBLdH0yhxt2ABSt2aMucE_9vP&index=2

Submission task

For each of the organelles in Part 1,2 and 3 write a paragraph in your own words to describe their structure and function.

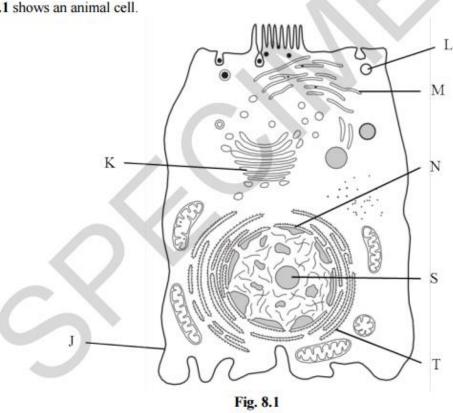

A Level Biology Bridging Cells Section: Examination style Questions NAME:-

Guidance	
Response	

1. Describe three structures / organelles that are present in generalised plant cells but absent from animal cells.

А	
В	
С	

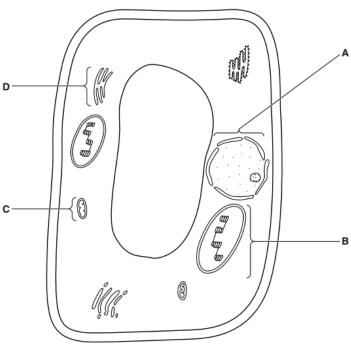
2. Name the numbered structures in the Animal cell diagram below:


Cell part	Name of organelle	Cell part	Name of organelle
1		7	
2		8	
3		9	
4		10	
5		11	
6			

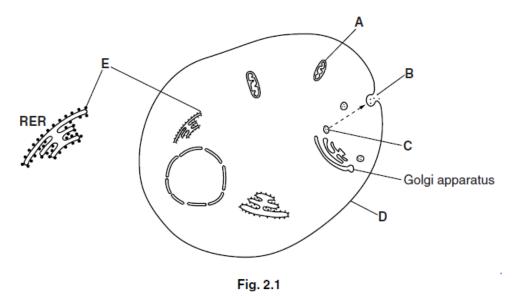
3. Name the organelle [the numbers do not correspond to the diagram in the last question]

Organelle	Function
1	Controls the activity of the cell.
2	Where polypeptides are synthesised.
3	Aerobic respiration takes place here.
4	Receives proteins from the ER and modifies them adding sugar molecules
5	Supports the cell and helps organelles and substances move through the cytoplasm
6	Contains hydrolytic enzymes.
7	These beat to move a band of mucus in trachea
8	They are abundant in cells with a high level of metabolic activity
9	Involved in making lipids, including steroids.
10	Contains genetic material
11	Keeps hydrolytic enzymes separate from the rest of the cell
12	Only plant cells have large permanent ones
13	Where protein synthesis takes place assembly line to use mRNA to assemble proteins.
14	Packages proteins into vesicles to be transported inside cell or to the outside of the cell
15	Chromosomes attach to the spindles and motor proteins 'walk along' the tubulin threads moving the chromosomes to the poles
16	Forms the spindle fibres required for mitosis and meiosis
17	Helps to support the plant, when a cell is turgid this pushes the cell membrane against the cell wall
18	Are called plastids
19	Provide strength and support to plant cells
20	Are involved in the formation of cilia and undulipodia
21	Folds protein molecules into their specific 3D shape

4. Name the organelle


Organelle	Structure
1	Made of ribosomal RNA
2	A stack of membrane-bound, flattened sacs
3	Has pores - allows large molecules through like messenger RNA to pass
4	Consists of flattened membrane-bound sacs - which pinched off to form vesicles
5	Contain a loops of DNA and starch granules
6	Contain loops of DNA
7	Site of photosynthesis
8	They are formed from centrioles.
9	Endoplasmic reticulum without attached Ribosomes
10	Surrounded by an envelope which has a double membrane structure
11	Nucleolus inside
12	Transports proteins made on attached ribosomes
13	A stack of thylakoids is called a granum.
14	A network of protein structures in the cytoplasm
15	They are formed from centrioles.
16	Surrounded by 2 membranes with a fluid space between them.
17	Each contains microtubules.
18	Chlorophyll molecules are located within the thylakoid membranes.
19	Can fuse with phagosomes/phagocytic vesicles to digest pathogens
20	Contain a fluid filled matrix called a stroma.
21	These are protrusions from the cell and are surrounded by the cell surface membrane
22	Spherical sacs surrounded by a single membrane called a tonoplast
23	The inner membrane is a stack of membrane-bound, flattened sacs called thylakoids
24	Outside the plasma membrane
25	Is made from bundles of cellulose fibres

Which option describes the correct sequence of organelles involved during the production and secretion of a protein from this cell?


A S, K, L, J B T, K, L, J C T, M, L, J D S, T, K, L Your answer $\hfill \Box$

6.

(a) (i) Name the cell components labelled A and B.	
A	
В	
	[2]
ii) State the functions of the components labelled C and D.	
C	
D	
	[2]
(\mathbf{b}) A student suggested that the details of component \mathbf{C} could be seen clearly wit microscope.	h a very good
Evolain why the student is mat correct	
explain why the student is not correct.	
explain why the student is not correct.	
Explain why the student is not correct.	
explain why the student is not correct.	[2]
(c) Staining is a process often used in microscopy.	
(c) Staining is a process often used in microscopy.	
(c) Staining is a process often used in microscopy. Describe the advantages of staining specimens to be viewed under a microscope.	

Fig. 2.1 is a diagram of a cell showing the organelles involved in the production and secretion of an extracellular protein. The rough endoplasmic reticulum (**RER**) is shown enlarged at the side of the diagram.

Task 6 - Specialised Exchange Surfaces Research Resumed.

Remember FOR EACH EXAMPLE the aim is for you to be able to:

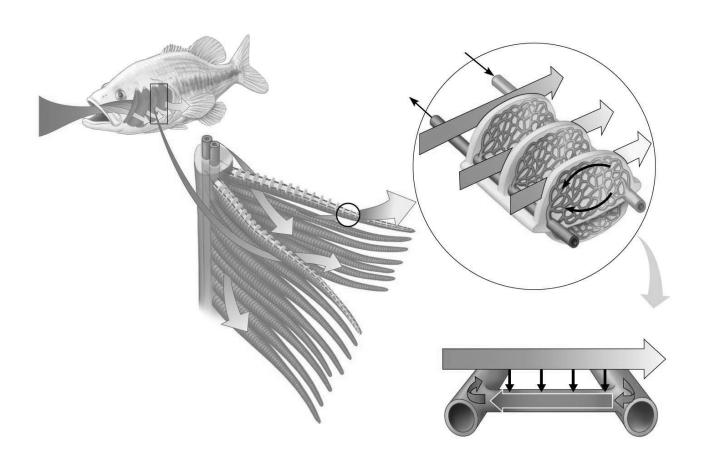
- 1. Name the substances exchanged
- 2. Describe key processes involved with increasing mass movement of air or water = ventilation
- 3. Describe key structures and tissue types and adaptations using A level terminology

Describe and explain the transfer methods diffusion/osmosis/active transport

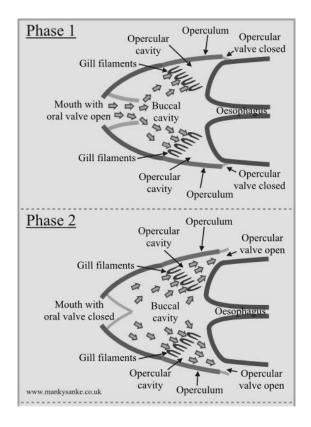
Example 2 Bony Fish Ventilation Research

https://www.youtube.com/watch?v=JPAnAleN2DU

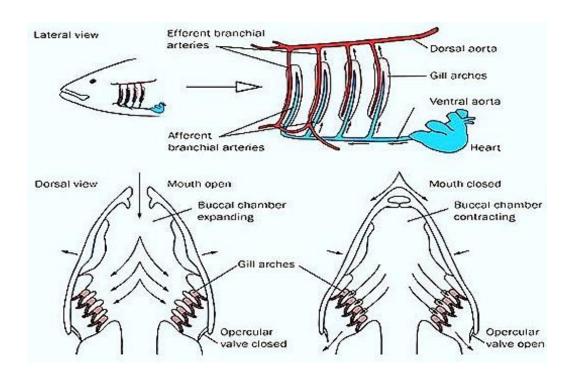
Question 1 — What are the gas exchange surfaces and ventilation structures in a bony fish? http://www.todayifoundout.com/index.php/2011/09/how-fish-gills-work/


http://www.biologymad.com/resources/M6GasExchange.pdf

The numerous primary lamellae of bony fishes (also known as gill filaments) increase surface area.

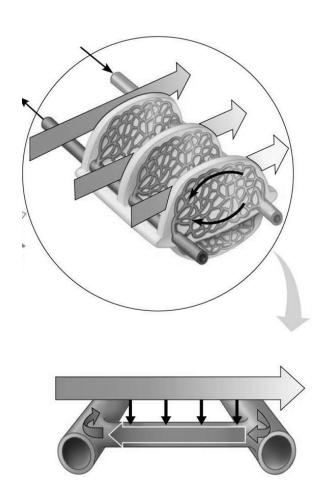

Off each are primary lamella are even more numerous smaller secondary lamellae (gill plates). The tiny blood capillaries are located close to the surface of each secondary lamellae which ensure a short diffusion distance.

The direction of blood flow is opposite to that of water flow. This ensures that the water flowing beside each capillary always has a higher oxygen concentration than that in the blood. In this way oxygen is taken up along the entire length of the secondary lamellae.

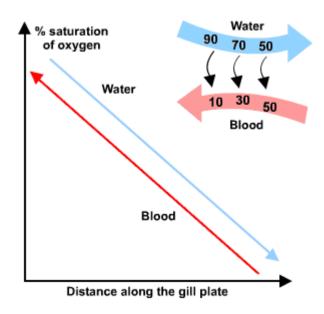

Label the diagrams below.

Question 2 - How do fish breathe?

There are different ways you can draw your diagrams



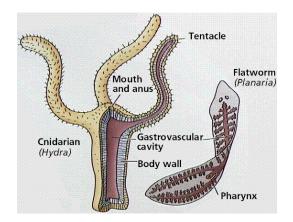
Bony fish ventilation stages	Labelled diagram
Mouth opens (operculum is closed) and the buccal cavity floor is lowered.	
This increases the volume and decreases the pressure of the buccal cavity compared to outside and water rushes into the mouth down a pressure gradient.	
The mouth is now closed and the operculum opens and the buccal cavity floor is raised.	
The pressure inside the buccal cavity is now higher than in the opercular cavity and water moves from the buccal cavity and over the gills into the opercular cavity.	
Water rushes out of the fish through the operculum down a pressure gradient.	

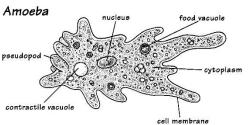

Question 3 \ Labelled diagr	What are the ad ram of primary lam	aptations of t nella	he Gill structu	res?	
	<u> </u>				
		II -			
Labelled diagr	am of secondary I	amelia			

Question 4 What is the counter current flow between the water and the blood in the fishes' gills? [annotate the diagrams in detail this time to explain]

https://physicsmadeeasy.wordpress.com/biology-notes/gas-exchange/ https://www.s-cool.co.uk/a-level/biology/gas-exchange/revise-it/gas-exchange-in-fish

Question 5. How does counter current flow maintain a concentration gradient in a fishes' gills? Explain the diagram.


Task 7 Circulation types AL level biology bridging work Name: _____

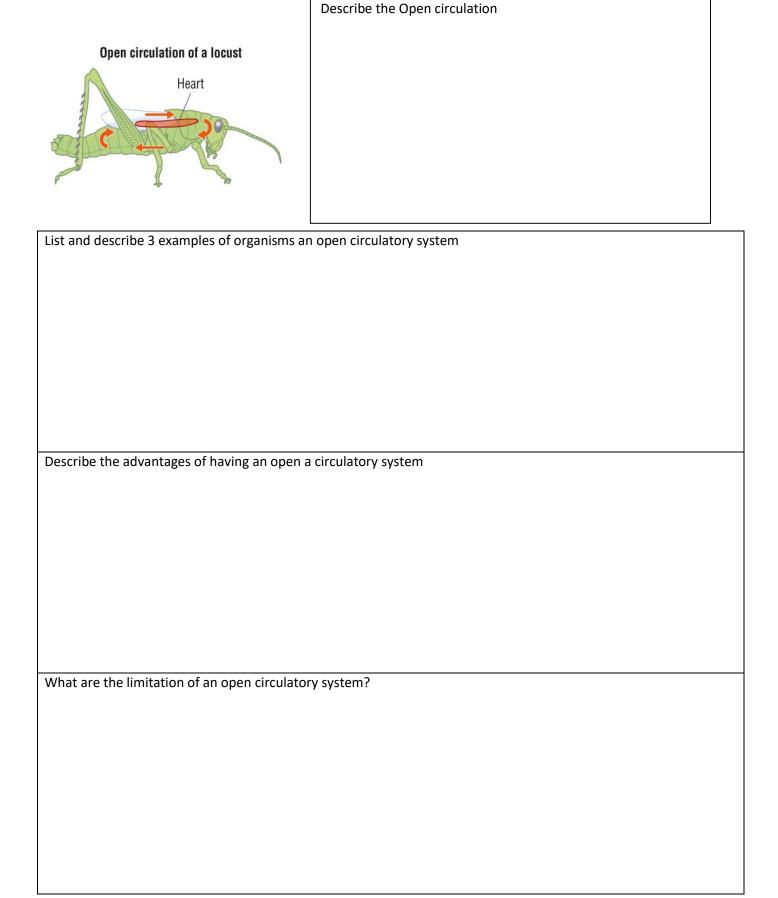

In this task you will be researching three different types of circulatory system:

- 1. No circulatory system,
- 2. Open circulatory system
- 3. Closed circulatory system and 4. Single circulatory system

You will need to be able to describe each type of circulation Suggest advantages of the system and discuss limitations

1. No circulatory system - Watch the introductory Video to start you off https://www.youtube.com/watch?v=OWwKVg0SVAc

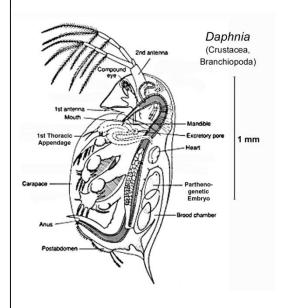
Describe the No circulatory system

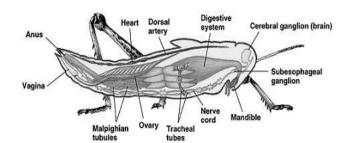

cell memorane	
List and describe 3 examples of organisms without a circulatory system	
Describe the advantages of not having a circulatory system	
6 to 1 to	
What are the limitation of not having a circulatory system?	
what are the initiation of hot having a chediatory system.	

2. Open circulatory systems

https://byjus.com/biology/difference-between-open-and-closed-circulatory-systems/

https://www.youtube.com/watch?v=fM179O0rT9A


https://www.youtube.com/watch?v=OWwKVg0SVAc



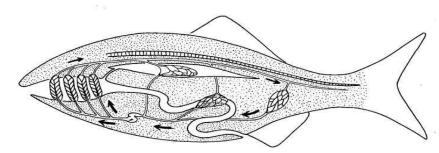
<u>Daphnia</u>: is a small crustacean which lives in ponds with its 'heart' on its back.

Blood cells are easily visible through the transparent body as they flow rapidly through the body cavity. At 20 °C, its heart rate is around 200 beats per minute, and slows down at lower temperatures.

How does this circulatory system work in Daphnia and what are the limitations?

https://www.youtube.com/watch?v=KCC FrbuR3U

What is transported in the open circulation in a migratory locust and what is the role of this system?


3. Closed circulatory system

Closed circulation of a fish

Gills	Heart	Body tissue				
[
List and d	escribe 3 exai	mpies ot organist	ns with a closed c	irculatory systen	1	
Describe	the advantage	es of having a clo	sed circulatory sys	stem		
What are	the limitatior	of closed circula	tory system?			

Describe a closed circulatory system

4. Single circulatory system

Describe the single circulatory system of a fish List and describe 3 examples of organisms with a single circulatory system Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
Describe the advantages of having a single circulatory system
What are the limitation of single circulatory system?
Describe the difference open and closed circulatory systems
2 33323 S S Spen and Globed Shouldtory Systems

Bridging work for Biology A level

Course: OCR Biology A

Specification H021

OCR Revise Biology ISBN: 9781789080353

Web resources to help you

https://alevelnotes.com/notes/biology

http://www.a-levelnotes.co.uk/ocr-biology-notes.html

http://astarbiology.com/ocr/exchange-surfaces/

https://www.revisely.co.uk/alevel/biology/ocr/

https://alevelbiology.co.uk/ocr/

https://www.ocr.org.uk/Images/209191-mechanisms-of-ventilation-and-gaseous-exchange.pdf

https://studywise.co.uk/a-level-revision/biology/

Youtube videos

SnapRevise

https://www.youtube.com/watch?v=iGcUcK7Vm o

https://www.youtube.com/watch?v=3HvTKcdCuIA

Cell structure

https://alevelbiology.co.uk/notes/organelle-structure-function/#1---the-nucleus--

https://www.youtube.com/watch?v=dLJdRs5w4u4

https://www.youtube.com/watch?v=URUJD5NEXC8

Crash course biology

https://www.youtube.com/watch?v=cj8dDTHGJBY

Cell structure task 2

https://alevelbiology.co.uk/notes/organelle-structure-function/#1---the-nucleus--

https://www.youtube.com/watch?v=0tS1NG589HU

https://alevelbiology.co.uk/notes/organelle-structure-function/#1---the-nucleus--

https://www.youtube.com/watch?v=Cqlux4fqrEw

https://www.nature.com/scitable/topicpage/photosynthetic-cells-14025371/

https://www.nature.com/scitable/topic/subcellular-compartments-14122679/

Cells structure Task 3

https://www.nature.com/scitable/topicpage/microtubules-and-filaments-14052932/

https://www.nature.com/scitable/topicpage/microtubules-and-filaments-14052932/

https://www.youtube.com/watch?v=dLJdRs5w4u4

https://www.youtube.com/watch?v=7 QD3zCapoA

Cells final summary

https://www.youtube.com/watch?v=cj8dDTHGJBY&list=PLnyeng9CrBLdH0yhxt2ABSt2aMucE_9vP

https://www.youtube.com/watch?v=9UvlqAVCoqY&list=PLnyeng9CrBLdH0yhxt2ABSt2aMucE_9vP&i ndex=2